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1 The Price of Anarchy

1.1 Flows and latency in networks

Last time we saw Braess’s paradox, in which a Nash equilibrium resulted in an inefficient
flow in a network. How can we quantify the inefficiency of Nash equilibria in a network?

Definition 1.1. For a routing problem we define the price of anarchy as

price of anarchy =
average travel time in worst Nash equilibrium

minimal average travel time
.

Note that the minimum is over all flows. The flow minimizing average travel time is
th socially optimal flow. The price of anarchy reflects how much average travel time can
decrease in going from a Nash equilibium flow (where all individuals choose a path to
minimize their travel time) to a prescribed flow.1

Example 1.1. Consider the following network.

1This was first defined by Elias Koutsoupias and Christos Papadimitriou. They were awarded the 2012
Gödel Prize (with four others).
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The price of anarchy of this network is 1. Finding the socially optimal strategy is equivalent
to minimizing the function

f(x1) = ax21 + b(1− x1)2.
Setting f ′(x1) = 0 is a equivalent to ax1 = b(1 − x1), which is the Nash equilibrium
condition.

Example 1.2. Consider the following network.

A Nash equilibrium flow occurs when x = 1. We can find an optimal flow by minimizing
the function

f(x) = x2 + (1− x).

This is minimized at x = 1/2, so the socially optimal strategy gives an average time of 3/4.
So the price of anarchy is 4/3.

Definition 1.2. A flow f from source s to destination t in a directed graph is a mixture
of paths from s to t, with mixture weight fP for path P . We write the flow on an edge e
as

fe =
∑
P :e∈P

fP .

Definition 1.3. Latency on an edge e is a non-decreasing function of Fe, written `e(Fe).
The latency on a path P is the total latency

LP (f) =
∑
e∈P

`e(Fe).

The average latency is

L(f) =
∑
P

fPLP (f) =
∑
e

Fe`e(Fe).

Definition 1.4. A flow f is a Nash equilibrium flow if, for all P and P ′, if fP > 0, then
LP (f) ≤ LP ′(f).

In equilibrium, each driver will choose some lowest latency path with respect to the
current choices of other drivers.
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1.2 The price of anarchy for linear and affine latencies

Theorem 1.1. For a directed, acyclic graph (DAG) with latency functions `e that are
continuous, non-decreasing, and non-negative, if there is a path from source to destination,
there is a Nash equilibrium unit flow.

Proof. Here is the idea of the proof. This is the non-atomic version of a congestion game.
For the atomic version (finite number of players), we showed that there is a pure Nash
equilibrium that can be found by descending a potential function. The same approach
works here. The potential function is

φ(f) =
∑
e

∫ Fe

0
`e(x) dx.

If f is not a Nash equilibrium flow, then φ(f) is not minimal. φ is convex, on a convex,
compact set, so it has a minimum.

Theorem 1.2. For linear latencies, that is `e(x) = aex with ae ≥ 0, if f is a Nash
equilibrium flow and f∗ is a socially optimal flow (that is L(f∗) is minimal, then

L(f) = L(f∗).

Proof. Since f is a Nash equilibrium, there is no advantage to shifting any flow from f to
any other flow. In particular, there is no advantage to shifting from f to f∗.

L(f) =
∑

P :fP>0

fPLP (f)

≤
∑
P

f∗PLP (f)

=
∑
P

f∗P
∑
e

`e(Fe)

=
∑
e

( ∑
P :e∈P

f∗P

)
`e(Fe)

=
∑
e

F ∗e `e(Fe)

=
∑
e

aeF
∗
e Fe

=
∑
e

ae

(
−(Fe − F ∗e )2/2 + (F ∗e

2 + F 2
e )/2

)
(magic)

≤
∑
e

ae(F
∗
e
2 + F 2

e )/2

3



=
∑
e

(F ∗e `e(F
∗
e ) + Fe`e(Fe))/2

= (L(f∗) + L(f))/2,

so L(f) ≤ L(f∗).

Corollary 1.1. For linear latency functions, the price of anarchy is 1.

Remark 1.1. In the proof above, we used a quadratic inequality to bound F ∗e Fe; one
could also use the Cauchy-Schwarz inequality to do the same. Quadratic inequalities are
useful because for any α, we have

xy = −
(
αx− y

2α

)2
+ α2x2 +

y2

4α2
≤ α2x2 +

y2

4α2
.

This shows that

xy = min
α

(
α2x2 +

1

4α
y2
)
.

If x and y have the same sign, then we could choose α2 = y/(2x) to give xy = α2x2 +
y2/(4α2), so in this case, these inequalities are tight. In bounding the price of anarchy, we
could use any of these inequalities to gie a linear bound relating to L(f) to L(f∗). The
choice of α2 = 1/2 givse the best linear bound.

Theorem 1.3. For affine latencies, that is, `e(x) = aex + be, with ae, be ≥ 0, if f is a
Nash equilibrium flow and f∗ is a socially optimal slow (that is L(f∗) is minimal), then

L(f) ≤ 4

3
L(f∗).

Proof. Recall, because there is no advantage to shifting from f to f∗,

L(f) =
∑
e

Fe`e(Fe) ≤
∑
e

F ∗e `e(Fe).

L(f)− L(f∗) =
∑
e

(Fe`e(Fe)− F ∗e `e(F ∗e ))

≤
∑
e

F ∗e (`e(Fe)− `e(F ∗e ))

=
∑
e

F ∗e ae(Fe − F ∗e )

=
∑
e

ae((Fe/2)2 − (F ∗e − Fe/2)2) (more magic)

≤ 1

4

∑
e

Fe(aeFe + be)
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=
L(f)

4
.

So L(f) ≤ (4/3)L(f∗).

Corollary 1.2. For affine latency functions, the price of anarchy is ≤ 4/3.

1.3 The impact of adding edges

As we saw before, adding edges to a network can reduce efficiency. We can quantify this
in relation to the price of anarchy.

Theorem 1.4. Consider a network G with a Nash equilibrium from fG and average latency
LG(fG) and a network H with additional roads added. Suppose that the price of anarchy
in H is no more than α. Then any Nash equilibrium flow fH has average latency

LH(fH) ≤ αLG(fG).

Proof.
LH(fH) ≤ αLH(f∗H) ≤ αLH(f∗G) = αLG(f∗G) ≤ αLG(fG).

Removing edges might improve the Nash equilibrium flow’s latency by up to the price
of anarchy. Which edges should we remove? It turns out finding the best edges to remove
is NP-hard. For affine latencies, even finding edges to remove that gives approximately
the biggest reduction is NP-hard! It’s east to efficiently compute a Nash equilibrium flow
that approximates the minimal latency Nash equilibrium flow within a factor of 4/3.; just
compute a Nash equilibrium flow for the full graph. Nothing better is possible; assuming
P 6= NP, there is no (4/3− ε)-approximation algorithm.
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